WJEC MATHEMATICS
INTERMEDIATE
GRAPHS

STRAIGHT LINE GRAPHS
(PLOTTING)
Contents

Some Simple Straight Lines
\[y = mx + c \]
Parallel Lines
Perpendicular Lines
Plotting Equations
Shaded Regions

Credits

WJEC Question bank
http://www.wjec.co.uk/question-bank/question-search.html
Some Simple Straight Lines
There are some basic straight lines that you should be able to draw.

\[y = x \]
The line of \(y = x \) is a diagonal line that does through (0,0).

\[y = -x \]
The line \(y = -x \) goes is a diagonal line, opposite to \(y = x \).
\(y = \, ? \)
If you need to plot a graph of \(y = \, ? \) (For example, \(y = 3 \) as seen below), you need to find the number on the \(y \) axis and draw a **horizontal line**.

\(x = \, ? \)
If you need to plot a graph of \(x = \, ? \) (For example, \(x = -3 \) as seen below), you need to find the number on the \(x \) axis and draw a **vertical line**.

Common Confusion!
Yes, the \(y \) axis is the **vertical** axis, but the line \(y = 4 \) is a **horizontal** line.
And yes, the \(x \) axis is the **horizontal** axis, but the line \(x = 4 \) is a **vertical** line.
Exercise G2

1. Plot, and label, the following lines of the graph paper below

 a. \(y = 4 \)

 b. \(y = 2 \)

 c. \(y = 1 \)

 d. \(y = -5 \)

 e. \(y = -2 \)

 f. \(y = -1 \)

2. Plot, and label, the following lines of the graph paper below

 a. \(x = 2 \)

 b. \(x = 5 \)

 c. \(x = 3 \)

 d. \(x = -4 \)

 e. \(x = -1 \)

 f. \(x = 0 \)
\[y = mx + c \]
You may be shown a straight line and asked to write the equation of that line. The formula we use is:

\[y = mx + c \]

where:
- \(m \) is the gradient of the line
- \(c \) is where the line crosses the \(y \) axis

Example
Write the equation of the following line in the form \(y = mx + c \)

So for the above line
- The gradient of the line is \(\frac{\text{length of vertical}}{\text{length of horizontal}} = \frac{1}{2} \)
- The line passes through the \(y \) axis at 1
The equation is \(y = \frac{1}{2}x + 1 \)

For this line,
- The gradient is \(\frac{\text{length of vertical}}{\text{length of horizontal}} = \frac{2}{1} = 2 \)
- The line passes through the \(y \) axis at -3
The equation is \(y = -2x - 3 \)
Exercise G3
Write the equations of the following lines

Parallel Lines
Parallel lines have the **SAME GRADIENT**.

\[
y = \frac{1}{2}x + 2 \\
y = \frac{1}{2}x + 0.5 \\
y = \frac{1}{2}x - 1
\]
Perpendicular Lines
The gradients of two lines that are perpendicular (meet at a right angle) **MULTIPLY TO GIVE -1**

![Graph showing perpendicular lines]

Example Question
Write the equation of a line that is parallel to \(y = 3x + 2 \) *and a line that is perpendicular to* \(y = 3x + 2 \)

Note: You only need to change the gradient, the value of \(c \) does not affect whether lines are parallel or perpendicular.

Parallel line: \(y = 3x + 1 \)
Perpendicular line: \(y = -\frac{1}{3}x + 1 \)

Exercise G4
Write the equation of a line that is perpendicular and a line that is parallel to the following equations:

a. \(y = 2x + 1 \)
b. \(y = -4x - 2 \)
c. \(y = 12x - 4 \)
d. \(y = \frac{1}{2}x + 4 \)
e. \(y = -\frac{1}{3}x + 3 \)
f. \(y = -\frac{1}{5}x - \frac{2}{3} \)
Plotting Straight Lines

You may be given an equation and be asked to draw the line. To do this, you will need to create a table of points.

Example

Plot the line \(y = 2x - 3 \) on the graph paper below.

Step one

Draw your table of points

\[
\begin{array}{c|c|c|c}
 x & 1 & 2 & 3 \\
 \hline
 y & \quad & \quad & \quad \\
\end{array}
\]

Substitute the \(x \) values into the equation to find the \(y \) value that goes with it.

- \(2(1) - 3 = 2 - 3 = -1 \)
- \(2(2) - 3 = 4 - 3 = 1 \)
- \(2(3) - 3 = 6 - 3 = 3 \)

We now have three coordinate points \((1, -1)\), \((2, 1)\) and \((3, 3)\). If using 1, 2, 3 isn't easy use three different values of \(x \) instead.

Once you have these points, plot them and the connect them with a line.
To complete the question, plot the points and join them up with a line.

Make sure your line uses the entire space of the graph

Exercise G5
Plot the following lines

1. \(y = x + 2 \)

2. \(y = -2x + 1 \)

3. \(y = 3x - 5 \)

4. \(y = \frac{1}{2}x + 1 \)
Exam Questions G8

1. (a) Use the grid below to draw graphs to represent each of the following equations.

(i) \[y = \frac{1}{2}x + 6 \]

(ii) \[x + y = 8 \]

Label your lines (i) and (ii) as appropriate.

(b) Using your answer to (a), are the lines \(y = \frac{1}{2}x + 6 \) and \(x + y = 8 \) perpendicular to each other? Give a reason for your answer.
2. In a game, the rule for plotting points is \((x, 2x)\).

On the graph below, plot the points when \(x = 1\), \(x = 4\) and when \(x = -2\). [3]

Line	Equation
A	\(y = 3x + 4\)
B	\(y = -3x + 3\)
C	\(y = -2x - 4\)
D	\(y = 3x - 5\)
E	\(y = 4x + 4\)

\((a)\) Which two of the above lines are parallel?
You must give a clear reason for your answer.

\((b)\) Which two of the above lines intersect each other on the \(y\)-axis?
Shaded Regions (Inequalities)
Common questions will give you multiple straight line equations. Once all the equations have been plotted there will be a region (part of the graph) that is contained within all the lines.

Example
Using the axes below, find the region defined by the following inequalities

\[
\begin{align*}
 x & \geq -2 \\
 y & \geq 1 \\
 x + 2y & \leq 4
\end{align*}
\]

Don't be worried by the inequalities. For now, assume they are all '=' signs, rearrange them to the correct form, and plot them.
Exam Questions G9

1. On the grid below, draw the region which satisfies all of the following inequalities.

\[x \geq -5 \]
\[y \leq 3 \]
\[y - x + 2 \geq 0 \]

You must clearly indicate the region that represents your answer. [4]

2. On the squared paper below, draw the region which satisfies all of the following inequalities.

\[x \leq 7 \]
\[x + y \geq 6 \]
\[y \leq \frac{x}{2} \]

Make sure that you clearly indicate the region that represents your answer. [3]
3. On the squared paper provided, draw the region which satisfies all of the following inequalities.

\[
\begin{align*}
 y &\leq 8 \\
 x + y &\geq 2 \\
 y &\geq 2x - 4
\end{align*}
\]

Make sure that you clearly indicate the region that represents your answer.

4. (a) Rafi has been asked to paint a region on a coordinate grid. He is given the following criteria.

The region must be such that

- \(y \leq x \)
- \(x \leq 1 \)
- \(y \geq -2 \)

Use the grid below to show the region that Rafi needs to paint.